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Abstract:

The Earth's land surface, including its biomass, is an integral part of the Earth's weather and climate

system. Land surface heterogeneity, such as the type and amount of vegetative covering, has a profound

effect oil local weather variability and therefore on regional variations of the global climate.

Surface conditions affect, local weather and climate through a nnmber of mechanisms. First., they

determine the re-distribution of the net radiative energy received at the surface, through the atmosphere,

from the sun. A certain fraction of this energy increases the surface ground temperature, another warms

the near-surface atmosphere, and the rest evaporates surface water, which in turn creates clouds and causes

precipitation. Second, they determine how much rainfall and snowmelt can be stored in the soil and how

much instead runs off into waterways. Finally, surface conditions influence the near-surface concentration

and distribution of greenhouse gases such as carbon dioxide.

The processes through which these mechanisms interact with the atmosphere can be modeled mathe-

matically, to within some degree of uncertainty, on the basis of underlying physical principles. Such a land

surface model provides predictive capability for surface variables including ground t.emperature, surface

humidity, and soil moisture and temperature. This information is important for agriculture and industry,

as well as for addressing fundamental scientific questions concerning global and local cliinate change.

In this study we apply a methodology known as tangent linear modeling to help us understand more

deeply the behavior of the Mosaic land surface model, a model that has been developed over the past several

years at. NASA/GSFC. This methodology allows us to examine, directly and quantitatively, the dependence

of prediction errors in land surface variables upon different vegetation conditions. The work also highlights

the importance of accurate soil moisture information. Although surface variables are predicted imperfectly

due t.o inherent uncert.ainties in the modeling process, our study suggests how satellite observations can be

combined with the model, through land surface data assimilation, to improve their prediction.
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Abstract:

We exploretile internal dynamicaland physicalfeaturesof the Mosaicland surfacemodel (LSM,

Koster and Sua,rez1992)usinga tangentlinear model (TLM) eigenana]ysis.The integrationwith tile

MosaicLSMis performedfor bothgrassandbaresoil landcoverswith tile atmosphericboundaryforcing

conditionsobservedat the Hapex-MobilhyCaumontsite in France. Tile TLM is derivednumerically

by finite differencingwith realisticvaluesof the basicstate. The eigenvaluesof this TLM represent

characteristictimescalesof landsurfacestateperturbations,andthescaledeigenvectors(modes)illustrate

the couplingamongthe landsurfacestate perturbations.The resultssuggestthat: (1) the Mosaicland

surfacemodelis stablefor the consideredbasicstate, i.e., any initial perturbation,or initial error, will

decaywith time. The constraintsbasedon physicalprinciplesin the MosaicLSM preventinstabilities

of the land surfacestate perturbations. (2) The time scalesof land surfacestate perturbationsrange

from a few minutesto severalmonths. Modesmainlyrepresentingthe behaviorof surfacetemperature

andsurfacemoistureperturbationsexhibit short time scales,whereasthe modesmainly representingsoil

moisturetransferbetweenthe root anddeepmodellayersexhibit long time scales.(3) The time scales

of tile modesdependsignificantlyuponvegetationparameters,soil hydraulicparameters,and soil layer

structure.

TLM eigenanalysisprovidesquantitativeestimatesof the timescalesandstructureof the landsurface

state perturbations.It is a.nefficientand effectivetool for developiugthe understandingof the Mosaic

LSM internalfeatures.Moreover,it providesusefulinsight for error cova.ria.ncemodelingneededin land

surfacedataassimilation.



1. Introduction

A landsurfacemodelor soil-vegetation-atmosphere-transfer(SVAT)schemeexhibitsa widerangeof

variabilityon timescalesfrom hoursto months,andevenyearsthroughatmosphericinteractions(Delworth

andManabe1988,1993;Entekhabi199,5).Thesetime scalesarestronglycontrolledby externalforcing

terms,especiallyprecipitationanddownwardshort-waveandlong-waveradiationa.tthesurface.Theyare

alsomodulatedby the internaldynamicsandphysicsof landsurfacesystems,in particularsoil moisture

dynamics.Therearenumerousstudieson thevariability of landsurfacemodels.Commonapproachesto

dateinclude:1) performingnumericalsimulations,2) buildingrelativelysimplelandsurfacesystemsthat

canbesolvedanalytically,and3) performingnumericalsensitivitytests.

In the first approach, either a General Circulation Model (GCM) including a land surface model or

a. stand-alone land surface model is integrated over long periods (e.g., Dickinson et al. 1984_ Sato et al.

1989). These studies have demonstrated the nlain variability of the land surface system and the pronounced

effect of the land surface on atmospheric variability. The second approach, solving equations of a simple

land surface model analytically, estimates characteristic time scales of land surface variables in extreme or

simplified cases (e.g., Delworth and Manabe 1988; Brubaker and Entekhabi 1995; Yang et a.l. 1995). This

approach greatly simplifies complex land surface processes. For example, one can represent the evaporation

and runoff process as a bncket model or treat the soil moisture system as a first-order Markov process.

However, such approximations may represent an oversimplification of land surface processes. In the third

approach, using either a coupled GCM or stand-alone land surface model, sensitivity experhnents are

usually performed with a change in one particular parameter or parameterization scheme (e.g., Henderson-

Sellers et al. 199.5; Xue et a.l. 1996a, 1996b). The results are then compared with a control integration,

to reveal the impact of the change. This type of sensitivity experiment identifies important parameters or

parameterizations in land surface models.



These three approaches do not disclose much information about variability due solely to the internal

dynamics and physics in land surface models. They mainly reveal the impact of external forcing variability,

due to the dominant control of the forcing terms (Entekhabi 1995; Delworth and Manabe 1W,8, 1.093). Even

in sensitivity tests, the signature of internal dynamics and physics is embedded within that of external

forcing variability.

Understanding of the internal dynamics and physics of a land surface model is important for the

development of land surface data assimilation methods. First, under the tangent linear at)proximation,

the internal dynamics and physics alone control land surface state perturbations, which are defined as the

departures from a nonlinear model trajectory. Second, with an understanding of the internal features, we

can readily identify key parameters and parameterizations that affect land surface state variations with

mininmm influence of the external forcing.

In this study, we explore the application of tangent linear model (TLM) analysis to the internal physics

and dynamics of the Mosaic Land Surface Model (LSM, Koster and Suarez 1992). In a recent review

paper, Errico (1997) describes the development and applications of tangent linear models in meteorology.

A tangent linear model, together with its adjoint model, is an exceptionally powerful tool for solving many

meteorological problems. Its main applications include sensitivity analysis of atmospheric system, optimal

analysis in the data assimilation, and dynamic stability analysis. Though the use of tangent linear models

and adjoint models has been increasing rapidly during the last decade, ttle application to land surface

models is not yet common. In this paper we present the TLM development, and eigenanalysis for the

Mosaic LSM. The results show that TLM eigenanalysis provides a effective method for understanding the

internal features of the Mosaic LSM.

In Section 2 we briefly describe the Mosaic land surface model. In Section 3, we derive the tangent

linear model based on the prognostic equations of the Mosaic LSM, and we describe the experimental



design and precautions taken in deriving tile TLM numerically. Ill Section 4 we present tile results of the

TLM eigenana.lysis, including characteristic time scales and modes of the land surface state perturbations.

In Section 5, we obtain a linea.rized soil moisture subsystem and examine the role of soil moisture dynamics.

We further simplify this subsystem t.o find explicit relationships between the eigenvalues and the Mosaic

LSM parameters. Finally, in Section 6 we summarize the main results and discuss their application to land

surface data assimilation.

2. Description of Mosaic Land Surface Model

The Mosaic LSM (Koster and Suarez 1992) is named for its use of the "mosaic" strategy to account for

subgrid heterogeneity in surface characteristics. In the Mosaic LSM, every surface grid cell in a GCM is

subdivided into relatively homogeneous subregions, or "mosaic tiles". Each tile contains a single vegetation

or bare soil type. Energy and water bala.nce calculations are performed over each tile. The tiles in a grid

cell respond to the mean conditions in the overlaying GCM grid cell. This GCM grid cell, in turn, responds

to the area-weighted fluxes of heat and moisture from the tiles (Koster and Suarez 1996).

The Mosaic LSM is based on the Simple Biosphere (SiB) model of Sellers et al. (1986), and includes

sophisticated biophysical processes. Similar to SiB, it calculates the energy and water transfers using an

electrical resistance network analog (Fig. 1). For example, to calculate the latent heat flux (current) along

a given pathway, the difference between surface and atmospheric vapor pressures (potentials) is divided

by an effective resistance, which is a function of the atmospheric conditions, and plant and soil properties.

Similarly, the sensible heat flux is determined by the difference between the temperatures (potentials) of the

surface and the boundary atmosphere. Recently the Mosaic LSM has been successfully implemented into

the Goddard Earth Observing System General Circulation Model (GEOS GCM) at the Data Assimilation

Office of the NASA Goddard Space Flight Center (DAO 1996).

The eight prognostic variables in each tile of the Mosaic LSM are:
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To: temperature of the surface/canopy system

Td: temperature in deep soil

C!: moisture in the ca.nopy interception reservoir

[Vi (i=1,2,3): moisture in the top, middle, and tile bottom soil layers, respectively

S: water equivalent in the snowpack, if any

ea: vapor pressure ill near surface layer (within tile canopy for the vegetation tiles).

The prognostic equations are as follows:

CH_- = R_,_,__:+ ....
(1)

_f_ = c<_, (2)
ClI-deep At

gC
-- = P + S,_at - Ei,_t - PT, (3)
At

gW__<= PT -- R_ - Eb_ - Et_a._p,l - Q1,2, (4)
At

_w3
At -- Q2,3 - Q3,,_, (6)

The prognostic equation for surface layer or canopy air vapor pressure (e_) is obtained by differentiating

the following diagnostic equation for surface evaporation E with respect, to Tc and e_:

E = Pk[_(<) ea

ps  7,41

The details of the derivation are given in Koster and Suarez (1992, 1994 1996).

The terms in the equations are:

At: model time step

(s)



Vii: heat capacity of surface/canopy system

Rs,,-_t: net short-wave radiation at surface

R* ," downward long-wave radiation at. surface
llL"

Rtl,,: upward long-wave radiation at surface

H: sensible heat flux

)_E: latent heat flux

Gd: heat flux to deep soil

VII-deep: heat capacity of deep soil system

P: precipitation rate

Smelt: snow-melt rate

Eint: evaporation of intercepted water

PT: throughfall rate of precipitation

Rs: surface runoff rate

Eb,: evaporation rate from surface

Et,.a,_sp,i (i=1,2): water removal rate via transpiration Dora the ith soil layer

Q<j: moisture flux from ith soil layer to jth soil layer

P_: snow fall rate

E,,_o_: snow sublimation rate

e_: saturated vapor pressure, a function of T_

r_fi: effective surface resistance to vapor transport, a function of Tc and ea

p: air density

_: ratio of the molecular weight of water vapor to that of dry air

p_: surface pressure



3. TLM derivation and experimental design

a. Tangent linear model derivation

Let X denote the vector of prognostic (state) variables. Written as a ssrstem of eight ordinary differential

equations, the general form of equations (1)-(8)is

dX
-- = F(X) + external forcing, (9)
dt

where tile vector F(X) call be represented by F(X) =(F_, /_, ...,Fs) T, and tile superscript T denotes the

transpose. External forcing terms are the near-surface atmospheric conditions, such as precipitation and

downward solar and longwave radiation fluxes at. the surface. These terrns do not depend explicitly on the

land surface state X.

A perturbation method is used to lhma.rize tile nonlinear system (9). A solution X of equation (9) is

decomposed into a "basic state" ._" = X(t) satisfying (9), plus a perturbation X':

x = 2 + x'. (10)

The Taylor expansion of F around the basic state .{" is

( OFi ) .,F_(x) = F_(2) + Ek _ xj+o(x'_).
J X T=X:

(11)

Substituting equations (10) and (11) into the system (9) and neglecting the higher-order terms, we obtain

the tangent linear model:

)
where .4ij = \ _ Xj=Xj

dX'
- AX', (12)

dt

, and ,4 = A(X(t)) is the tangent linear matrix or Jaeobian. In a data

assimilation context, the basic state .._" denotes a nonlinear model trajectory, and the linear system (12)

X' X'approximates the evolution of a.n initial error (0) = (t = 0) in that trajectory. Since the linear system



(12)eliminatestheexternalforcingI.erm,the behaviorof X'(t) is determined by the internal physics and

dynamics of the Mosaic LSM in the vicinity of the basic state. Dependence of X'(t) oil the external forcing

is implicit, through the dependence of A(._(t)) oll the basic state.

We study the behavior of (12) for A evaluated either at a specific time or for a specific time-mean state.

This simplifies tile problem considerably, for in each case A is then independent of time. The solution of

(12) is just

X'(t) = emX'(0). (13)

The eigendecomposition of A is given by

r r-1
A=t, At, , (14)

where A is the diagonal matrix of eigenvalues of .4, and the cohlmns of U are the corresponding eigenvectors.

An eigenvector (mode) corresponding to a given eigenvalue expresses a specific coupling among the variables

X'(t).

Since we consider .4 to be independent of time, the stability of the linear system (12) depends on

the eigenvalues A. If all eigenvalues have negative real parts, the system is stable for the basic state we

consider, and any initial error will decay with time if any one of the eigenvalues has a positive real part,

the system is unstable. If all eigenvalues are real, the solutions are non-oscillatory. A negative eigenvalue

-1
A represents a decay rate with e-folding time r = EV"

b. Experimental design

We perform four experiments with two consklerably different sets of vegetation parameters and basic

states. The purpose is to examine the characteristic time scales and the coupling of land surface state

pertnrbations or errors, under different land surface conditions and basic states. In experiments one and

two (EXP 1, EXP 2), the vegetation type is grass, with two different basic states. In experiments three

and four (EXP 3, EXP 4), the vegetation type is bare soil, and the same basic states of EXP 1 and EXP



2 are used.

We first generated a 3-year long control iutegration with 90% grass and 10% bare soil using one year

of observed surface forcing repeatedly. The purpose of the control run is two-fold. First., it. shows the

length of time required for tile Mosaic LSM to arrive a.t equilibriuln. Second, it provides appropriate basic

state values for the four experiments. We selected values for the basic state from the control run after

equilibrium was reached.

The near-surface atmospheric forcing for the control run was observed at the Hapex-Mobilhy Caumont

site, in France (43°41"N, 0%" W) (Goutorbe 1991; Goutorbe and Tarrieu 1991). The data are available

at 30-minute time intervals for 1986. When the data were nnavailable, neighboring meteorological stations

were selected to provide the required information. This data. set has been used in the Project of Intercom-

parison of Land surface Processes Phase 2 (PILPS-2) experiments (Henderson-Sellers et al., 199a). The

forcing terms include downward shortwave and longwave ra.diation, precipitation, air temperature, 2-meter

specific humidity, 2-meter wind speed, and surface pressure.

We found that the Mosaic LSM reaches an equilibrium state in about six months. Therefore, we use

the results from the second year of the control run. Figure 2 shows the monthly-mean diurnal cycle of the

laud surface variables for June. It represents a typical exalnple for middle latitude regions. The canopy

air vapor pressure (e_) is consistently higher than the 2-meter vapor pressure (e2_) with strong diurnal

variability. The surface canopy temperature (I_) is higher than that a.t 2-meter (T2m) during the day" with

a peak difference around noon. At. night, the surface telnperature becomes lower than that at 2-meter as

a result of longwave emission from the surface. The deep soil temperature (Ta) does not change much.

The soil wetness of the first two layers, which is defined a.s the degree of saturation in each respective soil

layer, is dryer than in the deep layer, since evaporation and evapotranspiration take place from the first

two layers. Only the surface layer exhibits a significant soil wetness diurnal cycle.
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Basedon this long-termcontrol run, weselectedtwobasicstates:thestate at 13ZJune 1, 1986,and

the June monthlymeanstate at laZ. The other input parameters to the TLM correspond to these two

situations. We select noontime and a summer month, June, since the land surface processes are most

active then. Due to the lack of snow cover and interception storage during these times, the original eight

prognostic equations are reduced to six equations. The counterparts of equations (3) and (7) are therefore

eliminated from the TLM (equation 12).

Table 1 summarizes the four experiments, together with the two basic states, leaf area index, and soil

physical parameters. There are clear differences between the two basic states: the temperature and surface

vapor pressure values a.t laZ mean for June are higher than at 13Z June 1, and all three soil wetness values

at laZ mean for June are consistently lower than those at laZ .June 1. The vegetation and soil pa.rameters

are also significant.ly different between grass and bare soil. The "scaling values" in Table 1 are described

in the next subsection.

c. T<mgent linear matrix calculatio_

The tangent linear matrices A(.k') for the four experiments were calculated using a centered difference

schemes, rather than an analytical derivative, as follows. For each experiment, six pairs of perturbed states

(-{"+ &'5) and (X- 6xj), j = 1, 2, ..., 6 are formed first. Here .{" is the basic state and g.Tj is a perturbation,

described below, around the jth component of the basic state. Six pairs of one-step integrations with

F,(_"+& a)-_; (x- _x; )
the Mosaic LSM are then performed, to compute za_j as an approximation to Aij(.,_') for

i, j = 1, 2, ..., 6. Then the perturbation magnitude is reduced by a factor of two and the process is repeated.

At the n °_ step, _'5 = _ for j = 1,2, .,6, where _.Z'j1 is the perturbation at the initial step. The
2(__1) ..

process is halted when the successive matrices show sufficient convergence of their eigenvalues, as described

in the following section. Thus we arrive at A(.{') for each of the four experiments.

The magnitudes of the initial perturbations should be meaningful, for example, not larger than the
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Table 1: Experiment description. ,S'Wi is soil wetness (the degree of saturation, FVJi't"i,s_t) , and Wi,sat is

the saturation moisture content ill ith soil layer. 5Zij is the distance between the centers of ith and jth soil

laver. LAI is the

iTEM

Description

of basic state

and forcing

terms

eaf area index.

EXP 1

basic state

and forcing terms

from: laZ

June 1, 1986

EXP 2

basic state

and forcing terms

from: 13Z

mean for June

Vegetation type grass grass

Basic states:

T,. (K)
_ (K)
e. (hpa)

SHq

SW2

Paranleters:

LAI

Wl,s_t(Inm)

Wj,_t (mm)
5&,2(m)
aZ2,3(T/1)

18.27

16.53

18.95

0.5439

0.5782

0.6910

3.671

8.4

197.4

420.0

0.245

0.735

5.6

1.53

5.0

0.59

11.10

17.34

Scaling Value:

for T_ (K)
for Td (K)
for e. (hpa)

for I'V1 ( m In)

for I"I"2 (ram)

for I_"3 (mm)

26.08

17.72

22.64

0.4143

0.4948

0.6244

3.671

8.4

197.4

420.0

0.245

0.735

5.6

1.53

5.0

0.59

11.10

17.34

EXP 3

basic state

and forcing terms

from: 13Z

June 1, 1986

EXP 4

basic state

and forcing terms

from: 13Z

n]ea.n for June

bare soil bare soil

18.27

16.53

18.95

0.5439

0.5782

0.6910

0.001

4.0

4.0

130.56

0.0092

0.1546

9.0

2.13

3.7

0.52

0.375

5.23

26.08

17.72

22.64

0.4143

0.4948

0.6244

0.001

4.0

4.0

130.56

0.0092

0.1546

9.0

2.13

3.7

0.52

0.375

5.23
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sizeof uncertaintiesill the land surfacestate. Also the perturbedstatesshouldstay within tile local

linear regimeof the basicstate. As shownin the control run, the basicstateat noontime satisfiesthe

relationships5_|¥3 > SH72 > ,5'I¥1, _/',- > T2m, and e, > e2,_. The perturbed states should retain these

relationships to stay within the linear regime. There are also immerous "conditionals" in the formulation of

the Mosaic LSM. For example, soil moisture diffusion between two adjacent layers depends on the moisture

gradient. If the perturbed state reverses this gradient, the soil moisture flux will abruptly change sign and

magnitude. We careflflly chose tile perturbation magnitudes so that the perturbed states lie within the

same continuous regime as the basic state. The initial perturbation magnitude was one degree Celsius for

T_ and Tg, one hpa for e'_, 3% for the first and second layer soil wetness, and 5% for deep soil wetness.

An eigenanalysis will be applied to each of tile four matrices A(X) as described in Section 4. The

eigenvectors are scaled to nondimensionalize and to enable to comparison of their elements, and are also

normalized to unity upon dividing by the largest magnitude of the respective eigenvector elements. For

EXP 1 and EXP 2, we select, the scaling magnitudes a.s the standard deviations of each state variable at

laZ over the month of June from the control run. For EXP 3 and EXP 4, we t)erformed a. second control

run with bare soil to obtain scaling magnitudes, since the standard deviations differ from the control run

with grass (see scaling values in Table 1). The standard deviations a.t laZ of June from this second control

run are selected as tile scaling magnitudes for EXP 3 and EXP 4.

4. Eigenanalysis of the tangent linear matrix

a. Eigenanalgsis for the ttvo experiments with vegetation cover

Table 2 lists the e-folding times (negative reciprocals of the eigenvalues) for EXP 1 for 3 successively

smaller perturbations, denoted by Pi, i = 1,2, 3. All eigenvalues are negative and real, indicating a locally

stable and nonoscillatory system. The e-folding times range from 5 minutes (mode 1) to about four months

(mode 6). The e-folding times of the first five modes from the second perturbation are almost identical to
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Table 2: The e-folding times for EXP 1. The tangent linear matrix A(X) wa.s derived using successively,

smaller perturbations, indicated by Pl, P2, and P3.

PERT. MODE 1 MODE 2 MODE 3 MODE 4 MODE 5 MODE 6

Pl 5.06 rain 19.71 rain 1.04 hr 3.15 day 11.52 (lay 111.93 day

P2 5.06 min 19.68 rain 7.60 hr 3.30 day 11.52 clay 118.72 day

P3 5.07 rain 19.67 rain 7.62 hr 3.30 day 11.52 day 104.85 day

those from the third perturbation, indicating convergence. Tile last mode shows some oscillation due to

the numerical difficulty of solving for the minimum eigenvalue of a matrix with a wide range of eigenvahles;

the ratio of the largest to the smallest eigenvalue exceeds four orders of magnitude.

Figure 3 shows the six normalized eigenvectors (modes) for EXP 1, corresponding to P3 in Table 2.

Each panel corresponds to one mode and tile bars denote the magnitude of the elements. Each element is

associated with one of the six prognostic variables or state perturbations. Our discussion will be qualitative,

focusing on the dominant variables for each mode. While a moderate change of the scaling values would

affect tile quantitative appearance of Fig. 3, it would not affect the qualitative features.

The first mode shows that a perturbation in the surface vapor pressure e_ alone will decay quickly,

with a 5-minute e-folding time. The second mode indicates the coupling of T_ with e_. For this mode, a

high surface temperature provides more energy for surface evaporation, and increases the moisture-holding

capacity of the surface air. The near-surface air moisture gradient then increases, which stimulates more

evaporation from the ground. This mode has a 20-minute e-folding time scale. The third mode shows a

relatively weak negative coupling between the soil moisture in the top two layers. The fourth and sixth

modes depict the coupling between the soil moisture in the three layers. The soil moisture transfer in the

three layers exhibits two distinctive time scales. The fourth mode, representing soil moisture transfer from

the third layer to the upper two layers (or the reverse), has about a 3-day e-folding time. The sixth mode,

representing moisture transfer throughout the entire soil column, has a time scale of about 3 months. The

fifth mode primarily isolates Td with a 12-day e-folding time.
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Table3 lists tile e-foldingtimesfor eachmodeof EXP 2. Againall eigenvaluesarenegativeand real.

The six eigenvectorscorrespondingto tile fifth perturbationsP5 (Fig. 4) are similar to those of EXP 1.

The e-folding times of EXP 2 are comparable to those of EXP 1. However, the third and sixth modes, which

represent soil moisture transfer from the top soil layer and throughout the whole soil column respectively,

have much shorter thne scales. The reduction in time scales of these two modes corresponds to the lower

basic state soil wetness (Table 1) of EXP 2 compared with EXP 1.

Table 3: As in Table 2 )ut for EXP 2.

PERT. MODE 1 MODE 2 MODE 3 MODE 4 MODE 5 MODE 6

P1 5.03 rain 16.21 rain 4.49 hr 3.43 day 11.39 clay 47.77 day

4.56 hr 3.56 day 11.41 day 51.65 dayP2 5.01 rain 16.19 min

P3 5.01 min 16.86 rain 4.61 hr 3.59 day 11.45 day 52.87 day

P4 5.02 min 16.86 rain 4.61 hr 3.59 day 11.45 day 48.92 day

P5 5.00 min 16.88 rain 4.61 hr 3.59 day 11.46 day 58.49 day

b. Eigenanalgsis for the two experiments without vegetation cover

Table 4 and Fig. 5 show the eigenvalues and eigenvectors for EXP 3, which has the same basic state as

EXP 1 but with bare soil. The e-folding times of EXP 3 are significantly shorter than those of both EXP

1 and EXP 2. The first three modes have time scales on the order of minutes. There are no intermediate

modes with e-folding times between one hour and 10 days. The longest time scale is reduced to about a

month.

Unlike EXP 1 and EXP 2, the first eigenvector of EXP 3 (Figure 5) represents the soil moisture transfer

between the first two adjacent soil layers. The e-folding time of this mode is about 4 minutes, which is

much shorter than that of the corresponding mode in EXP 1 and EXP 2 (third mode). This reduction in

time scale results from two factors. First, bare soil has no evapotranspiration, so soil moisture evaporates

directly from the surface. Second, the soil depth of the first two layers is shallow (see Table 1), so moisture

transfer is fast. The second mode isolates ea with a 5-minute time scale, which is similar to the first mode

13



Table 4: Similar to Table 2 except for EXP 3.

PERT. MODE 1 MODE 2 MODE 3 MODE 4 MODE 5 MODE 6

P1 4.47 min 4.96 min 28.08 rain 57.08 rain 11.87 day 23.46 day

P2 4.15 rain 4.96 rain 28.04 min 59.25 rain 11.87 day 24.49 day

P3 3.91 min 4.96 mill 28.03 rain 1.00 hr 11.87 day 24.57 day

P4 3.73 rain 4.96 min 28.03 rain 1.03 hr

P5 3.55 min 4.96 min 28.03 rain 1.08 hr

P6 3.55 rain 4.96 rain 2_.03 rain 1.08 hr

11.87 day 26.07 day

11.82 day 21.47 day

11.S7 day 30.04 day

Table 5: Similar to Table 2 except, for EXP 4.

PERT. MODE 1 MODE2 MODE3 MODE4 MODE5 MODE6

P1 4.13 min 5.25 min 25.24 mill 1A5 hr 3.15 day 1:3.03 day

P2 4.30 min 5.25 min 25.19 rain 1A6 hr 3.41 day 13.06 day

P3 4.34 min 5.25 min 25.19 min 1.46 hr 3.50 day 13.07 day"

P4 4.35 rain 5.25 min 25.18 rain 1.46 hr 3.50 day 13.06 day

P5 4.35 rain 5.25 rain 25.18 rain 1.,'16 hr 3.48 day 13.05 day

P6 4.35 min 5.25 rain 25.18 rain 1.46 hr 3.60 day 13.12 day

P7 4.35 rain 5.24 min 25.20 min 1.46 hr 3.56 clay 13.06 day

of the two previous experiments. The third inode shows the positive coupling between T_ and e_ with a

28-minute e-folding time, which is relatively long compared with the corresponding mode in EXP 1 and

EXP 2 (second mode). Once again, the fourth and sixth modes depict two different soil moisture transfer

processes, but now with shorter timesca.les. The fourth mode, with a one hour time scale, shows a negative

relationship between the soil moisture in the upper two layers and that of the third layer. Tile sixth mode,

with about a one month time scale, det)icts transfer of moisture throughout the entire soil column. The

fifth mode that primarily isolated Ta in EXP 1 and EXP 2 now also includes components of moisture

exhibiting a similar time scale. Its e-folding time is comparable to that in EXP 1 and EXP 2.

Table 5 lists tile e-folding times for EXP 4. They are comparable with those of EXP 3, except that

of mode ;5 (around 3 days), which represents soil moisture transfer throughout the entire soil column

(compared with mode 6 of EXP 3, around 30 days). Figure 6 displays the eigenvectors for EXP 4.

Similarly to EXP 3, the first eigenvector depicts a negative coupling between the soil moisture in the first.
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two soil layers. However, e, appears as a dominant variable in this mode. The second mode again isolates

e,. Tile third mode shows once more the coupling between Tc and e,, with all e-folding time of 25 minutes.

Modes 4 and 5 represent significant moisture transfer among the model layers. Tile time scale of mode 5

is reduced to about 3.5 days which is probably related to the smaller initial soil wetness used in EXP 4.

Again, there is a mode isolating T_ (last mode) with about a 13-day time scale, similar to mode 5 of EXP

3.

c. Summary of the four experiment._

The results from all four experiments show common features even though different basic states and

land covers were used. Tables 6 and 7 summarize the modes and associated physical processes. The e-

folding times range widely in all experiments indicating clear different characteristic time scales of these

land surface processes. There are several distinctive modes including those isolating e_, Td, soil moisture

transfer and coupling between T_ and e_.

The two different basic states generally do not produce large changes in eigenvalues (EXP 1 versus

EXP 2, EXP 3 versus EXP 4). However, the mode that represents soil moisture transfer in the entire soil

column shows a much shorter time scale when the basic state of 13Z monthly mean for June is used. This

suggests that higher basic state surface temperature and vapor pressure and lower soil wetness causes a

soil moisture perturbation decaying more quickly throughout the soil column.

The eigenvectors of EXP 1 and EXP 2 are also similar, as are those of EXP 3 and EXP 4. However,

the eigenvectors change significantly depending on whether or not there is vegetation cover.

The impact of vegetation is clear. In bare soil (EXP 3, EXP 4), the three modes representing soil

moisture transfer have much shorter e-folding times compared with those obtained when there is vegetation

covering (EXP 1, EXP 2). The soil moisture perturbation in the first two layers is also coupled.

The mode isolating the Td perturbation has a consistent e-folding time across the four experiments. The
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reason is explained by examining tile linearized Td prognostic equation (2). The solution of the linearized

perturbation equation shows that the e-folding time of Td perturbation is determined mainly by the soil

heat capacity and the depth of of soil layer where tile temperature varies slowly and does not have diurnal

variation. In the Mosaic LSM, these parameters are the same for grass and bare soil.

Table 6: Description of the eigenmodes derived from EXP 1 and EXP 2. Tile e-folding times for EXP 2

are given in parentheses.

Mode Description Mode Order e-folding Time

Dominant e_ perturbation Mode 1 5.07 (5.00)rain

Coupling between T_ and ca Mode 2 19.67 (16.88) rain

Dominant Hq perturbation Mode 3 7.62 (4.61) hr

Coupling of soil moisture in the three soil layers. Mode 4 3.30 (3.59) day

Moisture perturbation in tile deep layer has

the opposite sign of that in the upper two layers.

Dominant Td perturbation Mode 5 11.52 (11.46) day

Coupling of soil moisture. Signs of the soil moisture Mode 6 104.85 (,58.49) day

perturbations are the same in the three layers.

Table 7: Description of the eigenmodes derived from EXP 3 and EXP 4. The e-folding times and tile

different mode orders for EXP 4 are given in parentheses.

Mode Description Mode Order e-folding Time

Dominant e_ perturbation Mode 1 4.96 (5.24)rain

Coupling of soil moisture between tile upper Mode 2

two soil layers. In EXP 4, this coupling is 3.55 (4.35) rain

associated with e_ perturbation

Coupling between T_ and e_ perturbation Mode 3 28.03 (2.5.20) rain

Mode 4 1.08 (1.46) hrCoupling of soil moisture in the three soil

layers. Moisture perturbation in the deep

layer has the opposite sign of that in the upper

two layers.

Dominant Td perturbation Mode 5 (Mode 6) 11.87 (13.06) days

Coupling of soil moisture. Signs of the soil moisture Mode 6 (Mode 5) 30.04 (3.56) day

perturbations are the same in the three layers.

5. Eigenanalysis of soil moisture dynamic subsystem

As shown above, the modes representing the evolution of soil moisture perturbations have relatively long

time scales. These modes are important because they retain the initial soil moisture error with the model
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integrations.Thesemodesarealsoweaklycoupledwith other landsurfacestate variablesassuggested

by the eigenvectorpatternsshownabove.Wethereforederivea soil moisturesubsystemby isolatingsoil

moisturevariablesto further examinesoil moisturedynamics.This subsystemconsistsof equations(5),

(6), and (7). The tangentlinearmatrix wasobtainedanalytically. Wethen evaluatethe tangentlinear

matricesusingbasicstatesandlandcoveringconditionsdescribedin Sectionab. Tile scalingmagnitudes

for soil moisturearethesameasusedin section3. The detailsof derivingthis subsystemaregivenin tile

Appendix.

a. Eige'nt, alues and eigenvectors

The tangent linear matrices for the soil moisture subsystem are similar to the corresponding submatrix

of the full system. The magnitudes generally differ from that of the full system by less thau 1%. Again,

all eigenvalues are negative and real. Table 8 lists the e-folding times for the four experiments. The values

of the first two modes are comparable with those derived from the 6-equation system (see Table 2-Table

5). The modes of EXP 1 and 2 again exhibit longer time scales than those of EXP 3 and 4. However, tile

e-folding tiIne of the last mode differs considerably from the previous experiments. This large difference is

likely related to the lack of the soil moisture coupling with other state variables in this subsystem.

Figure 7 illustrates the three normalized eigenvectors derived from this subsystem with the conditions

of EXP 1. The first mode mainly represents the ew)lution of the surface layer soil moisture perturbation.

The second mode shows the soil moisture transfer from the top two layers to the deep layer during the

decaying of th esoil moisture perturbations. The third mode represents the soil moisture extraction in the

entire soil column. As before, the third mode has the longest time scale. Figure 8 shows that the three

eigenvectors with EXP 2 conditions are comparable to that of EXP 1. Figures 9 and 10 display the three

eigenvectors with the conditions used in EXP 3 and 4. The eigenvectors of all four experiments derived

from the subsystem are similar to the respective eigenvectors derived from the 6-equation system. This
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indicates that the behavior of soil moisture perturbation in the full TLM can be approximated by that of

a TLM from a simplified sub-system.

Table 8: The e-folding times derived from the TLM of the soil dynamic subsystenl for tile four experiments.

EXP. LABEL MODE 1 MODE 2 MODE 3

EXP 1 7.46 hr 3.29 day 93.79 day

EXP 2 9.50 hr 3.89 (lay 75.57 day

EXP 3 3.57 min 1.09 hr 17.70 day

EXP 4 4.34 rain 1.63 hr 12.37 day

b. Key parameters

We further simplify" this soil moisture dynamic subsystem to get explicit dependencies on key param-

eters. We first rewrite the equation (A1) (see Al)pendix) including only the dominant terms that are

evaluated with the basic state values described in Section 3:

dW'
BI¥' _ (/_i,j)1¥', (15)dt

where bo denotes a dominant term ill the equation (A1), and 147' is the soil moisture perturbation (see

Appendix). Tables 9 and 10 list these dominant terms (with signs) for EXP 1 and EXP 3, respectively. The

dominant terms for EXP 2 and EXP 4 are similar but with slight changes. For both grass and bare soil land

conditions, the terms representing moisture flux and the itnpact of soil moisture on surface evaporation

are dominant, whereas tile influence of soil moisture on evapotranspiration is less important. Soil physical

parameters and soil layer depth are the key parameters as shown below. Note that Wi denotes tile mean

state of soil moisture here.

For convenience, we list the notations used below and in the Appendix.

Ki, hi, 'g_i: soil hydraulic conductivity, hydraulic head, and soil moisture potential in layer ith respectively,

b: a soil parameter related to soil pore size distribution index

',-_Zi,j: mean depth between the ith and jth soil layer

18



Table 9: bi j tile dominant terms of the tangent linear matrix of the soil dynamical system, equation (15),

with a grass land cover condition (EXP 1).
dW'

dt

i=l
AZ1,2 W1 C1 Wl

& Z1,214q

i=3 0

[)i,2 hi,3

 -Q1 (2b+3 
-- AZ_,2W2 ,2 W2

_+_ r_ 2b+3
/kZ1,2_{" 2 AZ2_3_ _ -}-kdl, 2 If2

0., K34'2 b

AZ2,3 _{"2

rbs: resistance to bare soil evaporation

qs(Tc): saturated specific humidity at Tc

q_: air specific humidity

0

"2b+3tq p_l'i34'ab
- li"3 t°d2,3- AZ';,,31f3

2b+3,,q p,_,ka_'3b 2b+3,q
II'3 _2,3 + L._Z2,3_}' 3 lI,_3 t'¢3,'_

rs_rI: resistance provided by the soil itself to bare soil evaporation

rsc_: vegetation specific constant

fh,,m: relative humidity factor on tile resistance to bare soil evaporation.

ET: total evapotranspiration

r_: Canopy resistance to transpiration

rc-_,st,-_s_: unstressed canopy resistance to transpiration, independent of soil wetness

F(VPD) and F(T): factors by which canopy resistance increases due to temperature and vapor pressure

deficit (VPD) stress respectively, independent of soil moisture.

F(g,l): factor by which canopy resistance increase due to leaf water potential stress, dependent on soil

moist u re

f,,,: soil moisture potential in the root zone

Pplant, 1_'_, 't¢',_, Fsl , Fs2: prescribed physical parameters in the Mosaic LSM

E}: an estimate of evapotranspiration

K_,g: averaged hydraulic conductivity in the root zone, dependent on soil moisture

C'1 and r-2: see the appendix for explanation.
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Table 10: hi j, dominant terms hi the tangent linear matrix of tile soil dynamical system, equation (15),

with a bare soil land cover condition (EXP :3).

dt
i=1 pwI"2bt/'l

A Z1,2 Bq

i=2 pwK2b_/q
AZ1,2 W1

i=3 0

/_i,2

2bT3t"_ pwli2bt_'2

- w_ ,_1,2-_
2b+3t'_ pwf'[2bg'2 pt_,K3b'/'2

1!,,"2 W1,2 "t- AZI,2B/-2 _- _Z2,3],i,- 2

pu, Ix'3 _'2b

&Z2,3 B_

hi,3

0

(2b+3) t'_ p,_,KzV.'3b

-vd2'3 &Z2,3 W3

-{-3 ) {_ pwK3g'3b

_'_2,3 -}- AZ2,3 B'3

We discuss the solution of equation (15) under two simplifying assumptions.

t

Assumption I: Assume that the soil moisture perturbation in the top layer (tth) is decoupled fi'om the

other two variables. This simplification holds in EXP 1 and 2 (shown by the first, eigenvector patterns in

Figs 7 and 8). Equation (1.5) then becomes:

dw] , (16)
d_- _ bl'lWl'

and the solution is

!
.,, (t) = w'1 (O)exp(gq,lt). (17)

-1

From Tables 9, we see that the e-folding time, b--77._' has two components. The first component is proportional

to AZI,2 and W1, and inversely proportional to soil conductivity and soil moisture potential of layers 1

and 2, and soil constant b. For EXP 3 with bare soil, b1.1 ha_s only one term.

Assumption 2: Assume that the deep soil moistnre perturbation w_ is decoupled from the other two soil

moisture variables. In fact, w_ is a dominant variable in the third eigenvector for the all four experiments

J

(Fig 7 to Fig. 10). Then we have a form similar to (16) holds for w 3. The e-folding time -___/_1for w(3
b3.3

increases with AZ2,3 and W3, and decreases with soil conductivity and soil moisture potential of the third

layer, and soil constant b. For the case with grass, the moisture flux leaving the column also plays role.

The soil moisture perturbation at the second layer u,_ is always tightly coupled with either u'_ or w_

with intermediate time scale compared to the above two isolated modes. The experiments show that the
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e-foldingtime of thecouplingmodeincreaseswith themeandepthbetweenthe layersoneandtwo, and

decreaseswith soil physicalparameterslistedabove.

Table 11summarizestheserelationshipsbetweenthe e-foldingtime and key parametersand mean

statederivedfromthe simplifiedsituations.Of thesekeyparameters,the meandepthof tile adjacenttwo

soil layers,AZ1,2andAZ2,3,mainlyaccountsfor the largedifferencesin the e-foldingtime betweenthe

experimentswith vegetationandwithout vegetation.This is becauseall the otherkeyparametersarethe

sa.mefor grassandbaresoilconditionsin theMosaicLSM.Theseresultsagreequalitativelywith previous

studies(Yanget al. 1995;Yanget al., 1994).

Table 11: Generalrelationshipsbetweenthe e-foldingtimes and dominant itemsof the tangentlinear
matrix for soil moisturesubsystem.
Magnitudeof e-foldingtime soil hydraulicconductivity:
decreaseswith: K1,K2, K3

soil hydraulic potential:

soil constant:

b

Magnitude of e-folding time basic state of soil moisture:

increases with: Hq, W2,W3

mean depth of soil layer:

_ZI,2, /..XZ2,3

6. Summary and discussion

The TLM eigenanalysis efficiently computes the characteristic time scales and structure of tire model's

land surface state perturbations. It effectively synthesizes tire impact of different basic state and vegetation

conditions on the evolution of initial state errors. An understanding of these features is important for

assimilating land surface data into models and for improving the physical parameterizations in the land

surface schemes. It also provides additional information about the natural variability in a Mosaic LSM.

The main results are summarized as follows:

(1) The Mosaic LSM exhibits a wide range of internal variability. The e-folding times of the different
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modesrangefroma.Dw minutesto about3 months.Modesrepresentingtile evolutionof perturbationsin

surfacetemperatureandsurfacemoistureexhibitshortt.imescales.Tile modesrepresentingtheevolutionof

soilmoistureperturbationswithin thewholesoilcolumnexhibit,longertimescales.Tile moderepresenting

thedeepsoil temperature(T_)perturbationis weaklycoupledto theother landsurfacevariablesand has

a consistente-foldingtimeacrosstheexperiments.

(2) Thetime scalesdependsignificantlyuponvegetationparameters,soil parameters,andbasicstate

conditions.Themodesrepresentingthe behaviorof soil moistureperturbationshavesignificantlylonger

timescaleswhenvegetated.Theinfluenceof two differentbasicstatesis relativelysmallbecausethe two

statesusedherearenot significantlydifferent. However,wa.rmsurfacetemperatureand highsurfaceair

moisturetend to shortenthe e-foldingtinles.

(3) For the simplifiedsoil moisturedynamicsubsystem,tile terms representingmoistureflux and

the effectof soil moistureon surfaceevaporationare important. Whereasthe effectof soil moistureon

evapotranspirationis not significant.Notetheseresultsarewith respectto the forcingconditionused.In

particular,soil moistureis notdry. The keypa.rametersdeterminingthe e-foldingtime include:the mean

depth of soil layer, soil hydraulicconductivityand potential,soil parameterb, and mean soil moisture.

Deeper and wetter soils have longer time scales. Soils with high soil constant b and high soil hydraulic

conductivity and potential tend to have short time scales.

(4) The experiments suggest, that the Mosaic LSM is stable with respect to the basic states used. Any

initial perturbation, or initial error, will decay with time. The constraints based on physical principles in

the Mosaic LSM appear to prevent instabilities of the land surface state perturbations.

The results highlights the importance of accurate initial soil moisture and deep soil temperature in-

formation in land surface data assimilation. The initial errors in soil moisture and deep soil temperature

decay slowly. Therefore, emphasis should be placed on obtaining highly accurate data for these variables.

22



Theresultsalsoshowthesignificantdependenceof thetime scaleonvegetationconditionandsoil physical

parameters.Currentlythereis uncertaintyin theseprescribedparameters.However,it.is verypromising

that tile useof Satellitedatafrom advancedinstrunlents,suchasModerate-ResolutionhnagiugSpectrora-

diometer(MODIS)onEarth ObservingSystem(EOS),will improveglobalestimatesof soil moistureand

thoseparameters.

Wemust becarefulwhengeneralizingtile resultsobtainedin this study. First, the results were ob-

tained with respect to two sets of basic state aud vegetation conditions. For other regions with different

atmospheric and vegetation conditions, eigenvalues a,l(l eigenvectors may be different. Second, we chose

perturbation magnitudes in a way that ensures the perturbed state stays in the same local continuous

domain as the basic state. In reality, the perturbed state may evolved towards a different domain. In this

case the linear approximation around the basic state does not. hold. A thorough discussion regarding this

issue is given by Errico (1997). Finally, the selection of perturbation and scaling magnitudes remains an

open question. The perturbation magnitudes used in this study were empirically derived based on stan-

dard deviation from the control runs. Tile chosen perterbation magnitudes are comparable to measurement

uncertainty in these fields, but may change for different laud surface regimes.
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Appendix: Linearizlng the soil moisture dynamic subsystem

Tile prognostic equations for the three soil moisture variables in the Mosaic LSM are given in equations

(4), (.5), and (6).

To simplify these three equations, we assume the following: (1) surface runoff rate R_ for one time step
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is negligible,and (2) soil wetnessis moderate,thereforef/_,,., is approximated as one (Koster and Sua, rez

199.5).

Following tile same procedure as in the Section 3a, let |'Vi = |{"_ + l¥i', to get the tangent linear model

for the soil moisture dynamic subsystem:

d|¥ I

dt
-- BIY' = (hi,j) |¥'. (,41)

Here, H:' is a vector consisting of the three soil moisture state perturbations, and B is the 3x3 Jacobian

matrix of this soil moisture subsystem. We obtain B analytically, as follows.

The first element, bl,l, consists of three partial derivatives:

OF1 OEbs OEtr_,,_sp,l OQ1,2 (A2)
bl,l -- 0_¥1 OI'l:l 0_¥1 014"1

To derive the first term on the right side of equation (A2), the following formulae used in the Mosaic LSM

are needed:

Eb_ = p(q_(T_) - q_) = --,C'l (A3)
l'bs rbs

rbs = (rsurf Jr- rsca)fhum _ rsu,.] q- rsca, (.44)

( _,V1 )-2= 26 + 6 \ v77 o, (A,5)

Here 6:'1 =p(q_(Tc) - qa). Taking the partial derivative of Eb, with respect to I'V1, we have:

OEb_ , 0
O}V1 __([,10_1 (E) - 12(7'1 ( r_V, -2

(A6)
(rbs)2_¥1 \[{Tsat/

Applying (A3) to (A6) we have:

here, r -2 (}v__D2t__-2
= \Wl-,_t ) "

OEbs 12E{,r -2

OB:I C'l I471
(A6')
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To derive the second term of the right side of equation (A2), tile following formulae are needed:

ET 1¥1

Etr_nsp,l = W1 _- []_2'

ETi¥2

Et,.a_sp,2 - I¥1 + W2'

ET--
/'c

r_ = 'r__,,,_t,._s F(V PD)F(T)F( ¢,t),

1 G. - Z - E*T,'pl_.,+_.o,tp_. .t_,2,_

F(,_",_) _c _ _,_1 '2

( )b

rs°il = rsl "4- I£avgJ'

( W1 + W,2 )zb+:_

Applying all of these formulae to the partial derivative of Et,._,_p,a in (A2), we have

ET'|'V2 |¥1Cl('rb oE_r_2(2b + 3)Wl
OEtransp,1 I{rl OE T q_ -- -}-

0I'Wl |¥1 -{-I¥2 01¥1 (I"VI + I'W2)2 (lYroot)2C2_ 'c C2_/i'cpwl_,vg(|_['root) 2

where C2 = r__,,,,_t_F(VPD)F(T), and g,_ = g,_ - g,_.

To derive the third term of the right hand of (A2), the following formulae are needed

(

Here, p_, is the water density. The final expression is:

+
_transp,2

_TF O0 t

(,47)

(,48)

(A9)

(.410)

(All)

(A12)

(A13)

(.414)

(,416)

(,417)

OQ1,2 p.,K2b_l

OI'V1 5Z1,2|¥1
(,418)

25



b,a consists of the sum of terms in equations (A6), (A15), and (A18).

The derivations of the other elements in B are similar. We therefore only list the final expressions for

the other bij.

bl,2, the derivative of F1 with respect to W2, consist of two terms:

0_1 -- OEtz'ansp'l 001'2 (,419)
0}% 0W2 0I%

The final expression of bl,2 is:

OF1 W1C'l g,,.b Etransp,1 QI,22b + 3 p_,.bK2¢,2 |171C1E_.rs2(2b -Jr-3)+ (A20)
0_'I':2 -- I"I";2ootC'2'_'c |'I'root |¥2 6Z1,21,i42 ,.72 F, ,; ,-_ l__t root_'2q /"w a_9

bL3 = 0, since F1 is not a function of W3.

b2,1, the derivative of F2 with respect to H.q, consists of two terms ((02,3 is not a function of |¥1):

OF2 001,2 OEtraTzsp,2

0I¥" 1 O_'I," 1 O|,V 1
(.421)

The final expression of equation (A21) is:

OF,2 p_,K2b'(_,l I¥26'1 ¢,_b WzC'I E_rr_2(2b + 3) Etransp,2

Ogq -- 5Z1,21¥1 + W2_ootC'2_"'2 |,V2ootC2U.'p,_,K_.g + W,.oot
(A22)

b2,2, the derivative of F2 with respect to B"), is:

OF2 OQ1 2 OEtransp,2 0Q2,3

OW2 - 0_% OW2 OW2
(A23)

Here Q2,3 = pw/£3_, if soil wetness in the third layer is wetter than in the second layer. The final

expression of equation (A23) is:

0F2 _ Q1,2(2b + 3) + p_,.,K,2b'_'2 + B!2Cl_i'rb _ Etranspa + P,L Ka(,2b ('lE'_'rs2(2b + 3)|¥2 (A24)
0I¥2 IlL2 521,2I¥2 .-l..v2root"zv('../,c IYroot |'{_ 5Z2,3 C2g,Cpu, KavaI'l'r)2ot

b2,3, the expression of the derivative of F.2 with respect to W3, is:

OF2 -Q2,3(2b + 3) pwbK3g'3

0I/V3 _/V 3 5Z2,3[FI'_

(.425)
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b3,1 is zero since F..3is not a function of W1.

b3,2, the derivative of F3 with respect to I¥2, is:

OF3 002,3 OQ3,, 
01'I% 0W2 0W2

(A26)

where Q3,,x, is the moisture diffusion flux out the bottom of tile lowest layer and depends oll tile topography.

Since Q3,_:, is not a function of W'2, this expression can be simplified as:

OE3 = -p,fli3'_'2b (A27)
0W2 W2,4Z2,3

/WFinally, b3,3, the derivative of F:3with respect to I 3, is:

0[<3 Q2,3(2b + 3) bK3_<,ap_. Qa,_(2b + 3)+ (A28)
0 I¥3 VV3 6 Z 2 ,3 I'I'3 I¥3

The B matrix is evahated with the basic state vahms described in the Section 3.
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Figure captions

Fig. 1. The resistance network used for each tile in Mosaic LSM. The canopy covers 100% of the

land surface; water evaporating from the bare soil moves through the canopy air space (from Koster

and Suarez 1992).

Fig. 2. Monthly mean diurnal cycles averaged from the second June of a two-year Mosaic inte-

gration forced by a time series of the observed atmospheric conditions at the Caumont of Hapex-

Mobilhy, France, 1986. Upper panel: surface ground water vapor pressure ea (solid line) and near

surface water vapor pressure e2m (mb) (dashed solid line). Middle panel: ground temperature Tc

(C °) (solid line), deep soil temperature 7_ (long dashed line), and near surface air temperature T.2,_

(short dash line). Bottom: soil wetness in the first layer |'V1 (short dash line), root layer I'I':2 (long

dash line), and the deep layer lYa (solid line).

Fig. 3. Six normalized eigenvectors (in order of increasing time scales) derived from the TLM for

EXP 1. A bar denotes the magnitude of each variable.

Fig. 4. Same as Fig. 3 but for EXP 2.

Fig. 5. Same as Fig. 3 but for EXP 3.

Fig. 6. Same as Fig. 3 but for EXP 4.

Fig. 7: Three normalized eigenvectors (in order of increasing time scales) derived from the soil

dynamic subsystem with similar condition of EXP 1.

Fig. 8: Same as Fig. 7 but for EXP 2.

Fig. 9: Same as Fig. 7 but for EXP 3.



Fig. 10: SameasFig. 7 but for EXP 4.
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